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Abstract 

The evolutions of the material interpenetration boundary induced 
by Rayleigh-Taylor instability were calculated under various 
acceleration histories using a buoyancy-drag model. It reveals 
that the development of mixing under constant acceleration is 
very different from that under variable acceleration. The 
calculation results were compared with detailed experimental 
data to prove the validation of the model. On the bases of these, a 
multiphase buoyancy-drag model was developed to study mixing 
induced by Rayleigh-Taylor instability in dusty gases under 
constant acceleration. It is found that the mixing width decreases 
with the increase of the dusty concentration and the size of 
particles, which reveals that the particles in dusty gases restrain 
the development of mixing. 

Introduction  

When fluids of different densities are subjected to the 
acceleration which is in the opposite direction to the density 
gradient, Rayleigh-Taylor instability (RTI) occurs [7, 11]. Light 
fluid interpenetrates to heavy fluid to form bubbles, while heavy 
fluid interpenetrates to light fluid to form spikes. RTI plays an 
important role in natural phenomena and industrial applications, 
such as combustion, inertial confinement fusion (ICF), supernova 
explosion and geophysics et al. [3, 9]. 

When random perturbations on unstable interfaces are multimode 
spectrum, smaller structures compete and merge to form larger 
structures. This is an inverse cascade process. Until now, the 
theoretic study, numerical simulation and experimental 
investigation of RTI have been achieved a lot of useful 
information. It is found that the width of turbulent mixing zone 
(TMZ) increases with t2 [2, 9], which can be used to validate the 
model of RTI in the case of multimode perturbations. Now 
single-phase buoyancy-drag model is used in engineering design 
to instead of empirical expression, and better results are obtained. 
But the pure gases are rare in engineering applications, and 
particle/ dust loading effects in gases often exist. In order to 
describe the effect of particles on mixing, a multiphase 
buoyancy-drag model is developed on the basis of its single-
phase version, then it is used to study the evolution of RTI in 
dusty gases under constant acceleration and investigate the 
effects of particle loading N and particle size rp on mixing. 

In this paper the single-phase buoyancy-drag model is briefly 
described firstly. Secondly the multiphase buoyancy-drag model 
is developed. Then using this model, the mixing induced by RTI 
in dusty gas under constant acceleration is investigated. It is 
found that the mixing width decreases with the increase of the 
dusty concentration and the size of particles, which reveals that 
the particles in dusty gases restrain the development of mixing.  

Model Equations and Numerical Algorithm 

Single-phase Buoyancy-drag Model 

Layzer is the first to predict RTI evolution successfully using 
potential flow model and obtain the original buoyancy-drag 
model describing bubble motion [4]: 
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where E=exp(-6πa/λ). 

Now the general buoyancy-drag model can be written as [10]: 
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where uB and uB S denote the velocities of the bubbles and spikes 
respectively, g(t) is the time varying interface acceleration, and λ 
is the perturbation wavelength. Ca and Cd denote the added mass 
and bubble or spike drag coefficients respectively. These 
equations state that the net acceleration or deceleration of a 
bubble or spike is the difference between the buoyancy and drag 
forces acting. The left-hand side represents the total inertial of the 
bubble or spike and the inertial of the added mass which refers to 
the mass of the fluid that is pushed by the rising bubble or falling 

spike. In addition, the parameter E(t)=e  is introduced to 
account to the amplitude dependence, where k (=2π/λ) is the 
wave number and h

BekhC−

BB is the width of bubbles. 

For multimode perturbations, we assume that bubbles and spikes 
have the same periodicity, so they have the same characteristic 

wavelength . During the early linear growth regime,  

remains constant, but during the late time asymptotic regime,  
grows in a self-similar fashion, i.e., in proportion to the bubble 

amplitude h

λ̂ λ̂
λ̂

B. Thus in the model hB BB/ =b(A), where 
b(A)=0.5/(1+A) and A=(ρ2-ρ1)/(ρ1+ρ2). The characteristic 
wavelength for multimode perturbations grows as: 
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Under this assumption, only after the bubble amplitude hB has 

reached the value ,  starts to increase through bubble 
competition. 

B
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Multiphase Buoyancy-drag Model 

The single-phase model in last section is now extended to 
account for multiphase effects. The basic formulation stems from 
the dusty gas studies of Saffman (1962) [8], Michael (1964) [5] and 
Ukai et al. (2010) [12]. Saffman applied the formulation to laminar 
flow by deriving the multiphase Orr-Sommerfeld equation; 
Michael extended this work to the study of plane Poisuelle flow 
of dusty gases; and Ukai et al. applied the formulation to two 
kinds of dusty gas Richtmyer-Meshkov instabilities. Here, the 
effect of dust is described by two parameters: the dust 
concentration (or number density N) and a relaxation time 
(essentially Stokes number St). 

Recalling the formation of Saffman (1962) [8] and Ukai et al. 
(2010) [12], small perturbations are considered for flow variables 
and the governing equations are linearized. Then the above 
references apply boundary conditions at the far-field and at the 
species interface, following which the first order general 
expression applicable for RTI involving dusty gases is obtained 
as: 
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where f1 and f2 denote the particle mass loading in the light and 
heavy gases respectively and evaluated as f1=mN0/ρ1 and 
f2=mN0/ρ2, where m is the dust particle mass, and N0 is the initial 
dust concentration in number per unit volume. The other terms in 
equation (5) represent the acceleration g(t), wave number k, wave 
speed c, particle relaxation time scale τ (subscripts 1 and 2 
correspond to fluids 1 and 2 respectively), and I is the complex 
number (-1)1/2. The relaxation times are obtained as 
τ1=τ2=m/(6πrpμ). In this paper we assume τ1=τ2, which need not 
necessarily be always true, the other assumption made is that 
Stokes drag is valid. Thus equation (5) can also be written as: 
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where St1=St2=-ikτc is assumed in this study. Furthermore, Ukai 
et al. (2010) define a multiphase Atwood number Am under the 
small St (<<1) limit as: 
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which, for a generic St, can be written as: 
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Thus the multiphase effect in the formation leads to the extension 
of the classical Atwood number A to the multiphase Atwood 
number Am as defined in equation (8). In addition, ρ is replaced 
by ρ(1+f/(1+St)) in the multiphase formulation. Following 
equations (2) and (3) by considering the added mass term, 
buoyancy and drag effects, we can analogously and intuitively 
obtain the following two equations for the bubble and spike 
motion in dusty gases: 
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For multimode perturbations, we extend equation (4) by also 
accounting for multiphase effects through the b(Am) parameter, 
defined as b(Am)=0.5/(1+Am) and also appropriately modify the 
characteristic wavelength for multimode perturbations to account 
for multiphase effects: 
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Here we are using the same definitions for , with the only 
replacement for A by A

λ̂
m. 

Numerical Algorithm 

For single-phase model, equations (2) and (3) are solved. In the 
case of multimode perturbations, equation (4) is also solved. For 
multiphase model, equations (9) and (10) are solved. In the same 
it is needed to solve equation (11) for multimode perturbations. 
Thus the model equations solved in this study are a set of second 
order ordinary differential equations which can be transformed to 
first order difference equations as dhB,S/dt=uB,S and 

λ2
,21, SBdSB uCCgCdtdu −= . They can be solved by 

forth order Runge-Kutta method. 

Results Analysis and Discussion 

Validation of the Single-phase Buoyancy-drag Model 

This section is to validate the single-phase model. The widths of 
bubble and spike under four kinds of accelerations (see figure 1) 
are calculated using this single-phase mode. In figure 1, four 
kinds of acceleration which are experimental data measured by 
Dimonte et al. [2] are denoted as G_n, n=1,2,3,4, and g0 is the 
gravity acceleration. In the calculation, good agreement can be 
obtained by adjusting drag coefficient Cd and initial amplitude hi0. 

 



 

Figure 1. Four kinds of accelerations used in the calculation. 

The widths of bubble and spike versus displacement Z are given 
in figure 2 and 3. Here, Z=∫∫gdt’dt. From these two figures, it can 
be seen that under four kinds of accelerations the calculated 
values of widths of bubble and spike are agreed to their 
experimental values. In addition, widths of bubble and spike are 
evidently dependent to the slope dg/dt. If dg/dt>0, the mixing is 
enhanced, while if dg/dt<0, the mixing is decreased, which shows 
that the increasing acceleration is the most unstable acceleration 
profile. This could be important to ICF [1]. In the calculation, the 
ratio of densities of two fluids is small, during instability 
development process the asymmetry of bubble and spike is not 
evident, so the difference between widths of bubble and spike is 
small. 

 

Figure 2. The width of bubbles versus the displacement Z. 

 

Figure 3. The width of spikes versus the displacement Z. 

Study on RTI in Dusty Gases Using the Multiphase 
Buoyancy-drag Model 

In this section, the effect of solid particles on the RT mixing layer 
growth in dusty gases is investigated, first for single-mode RT, 
and then for multimode RT. The emphases of our study are the 

effects of particle loading N and particle size rp. We apply the 
multiphase buoyancy-drag model for cases corresponding to 
A=0.5, ρ1=1kg/m3, ρ2=3kg/m3, g=1m/s2, initial wavelength 
λ0=1cm and initial amplitude a0=0.1mm. 

For single-mode perturbations, we first investigate the effect of N 
on the amplitude growth. rp=40μm is chosen and this corresponds 
to St~1. We consider a baseline particle-free (N=0) case in 
addition to N in the range 108-1013m-3. Figure 4 shows the non-
dimensional amplitude ka (where a=0.5(hB+hB S)) versus non-
dimensional time ((Amkg) t). As expected, ka grows slower for 
higher N, since particles serve as an obstruction to the bubble and 
spike motion. We also compute the late time slopes of the bubble 
and spike amplitudes to obtain the respective late time constant 
bubble and spike terminal velocities (U

1/2

RT(B/S)). The multiphase 
buoyancy-drag model predictions for URT(B/S) are in accordance 
with the value obtained by equating the buoyancy and drag terms: 

( ) ( )( )( )dmmSBRT CgAAU λ±= 12       (12) 

consistent with the results obtained by Oron et al. (2001) [6], 
albeit with Am in place of A (the + sign corresponds to the 
bubbles and the – sign for the spikes). In addition, it is interesting 
to note in figure 4 that as N increases, the non-dimensional 
profiles also tend to converge, thereby creating a band of 
solutions between Am→A and Am→0. 

 
Figure 4. Non-dimensional amplitude versus non-dimensional time for 
different particle loadings with rp=40μm in single-mode RTI. 

Next, we study the effect of rp for a fixed N=1010m-3. We 
consider particle size in the range rp=4-400μm, corresponding to 
different St. Here rp=4μm corresponds to St~0.01, rp=40μm to 
St~1 and rp=400μm to St~100. Figure 5 shows the non-
dimensional amplitude versus non-dimensional time. It can be 
seen that ka grows slower for higher N. In addition, for very 
small rp, little particle mass is present to influence bubble and 
spike motion, so the results conform to the particle-free case 
(Am=A). On the other hand, for very large particle sizes, 
1+f/(1+St) →6πrpμN/ρ, so 1+f/(1+St) →6πrpμN, i.e., independent 
of ρ. Hence the initial density ratio loses significance and the 
mixing layer evolves tending to the Am→0 limit. 

 
Figure 5. Non-dimensional amplitude versus non-dimensional time for 
different particle sizes with N=1010m-3 in single-mode RTI. 



For multimode perturbations, the same initial conditions are used, 

with the difference being the use of  instead of λ and the 
corresponding equation for the wavelength growth rate (equation 
(11)). Figure 6 displays the growth of amplitude versus A

λ̂

mgt2 for 
a fixed rp=40μm for a range of N. As evident, higher N results in 
subdued mixing layer amplitude growth as more particles 
obstruct the rise of bubbles and the fall of spikes. Again the 
results are contained within a band, with the upper limit 
corresponding to Am→A (for N→0) and the lower limit to Am→0 
(for N→∞). The slope of these curves α are evaluated to be 
α=0.0606 for the upper limit and α=0.0491 for the lower limit. 
These values are similar to the classical result of α~0.05 reported 
by Youngs [13-16]. Thus it is possible that some of the established 
theories on hydrodynamic instability growth can be extended to 
multiphase systems as well by replacing A with Am. 
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